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ABSTRACT. Despite their important roles in biodiversity conservation, large-scale ecological monitoring 
programs are scarce, in large part due to the difficulty of achieving an effective design under fiscal constraints. 
Using long-term avian monitoring in the boreal forest of Alberta, Canada as an example, we present a 
methodology that uses power analysis, statistical modeling, and partial derivatives to identify cost-effective 
sampling strategies for ecological monitoring programs. Empirical parameter estimates were used in simulations 
that estimated the power of sampling designs to detect trend in a variety of species’ populations and community 
metrics. The ability to detect trend with increased sample effort depended on the monitoring target’s variability 
and how effort was allocated to sampling parameters. Power estimates were used to develop nonlinear models of 
the relationship between sample effort and power. A cost model was also developed, and partial derivatives of the 
power and cost models were evaluated to identify two cost-effective avian sampling strategies. For decreasing 
sample error, sampling multiple plots at a site is preferable to multiple within-year visits to the site, and many 
sites should be sampled relatively infrequently rather than sampling few sites frequently, although the importance 
of frequent sampling increases for variable targets. We end by stressing the need for long-term, spatially extensive 
data for additional taxa, and by introducing optimal design as an alternative to power analysis for the evaluation 
of ecological monitoring program designs. 

INTRODUCTION 

Ten years have passed since ratification of the 
Convention on Biological Diversity, a landmark, 
international conservation commitment. However, the 
conservation of biodiversity continues to be 
constrained by our inability to reliably predict the 
effects of environmental perturbations on biota 
(Walters and Holling 1990). Given this uncertainty, an 
information feedback loop is required to assess the 
impact of human activities on biodiversity. Ecological 
monitoring, the repeated measurement of biotic 
response to disturbance (Hinds 1984), provides this 
feedback, thereby facilitating adaptive management 
(Halbert 1993) and the establishment of conservation 
and research priorities (Burbidge 1991, Stork and 
Samways 1995). Large-scale monitoring, where 
detection of long-term trends over broad spatial scales 
is the goal, improves our ability to distinguish human 
impacts from natural changes (Spellerberg 1991) and 
allows inference at scales relevant to policy (Urquhart 
et al. 1998).  

Although large-scale ecological monitoring is required 
to conserve biodiversity (Johnson 1993, Minister of 

Supply and Services 1995), examples of such 
programs remain rare, in large part due to the 
difficulty of achieving effective monitoring data under 
cost constraints (Committee on Environment and 
Natural Resources 1997). The magnitude of this 
challenge is illustrated by the Environmental 
Monitoring and Assessment Program (EMAP), 
designed to monitor the status and trends of ecological 
resources in the United States (U.S. Environmental 
Protection Agency 2000). Although the program had a 
large investment of effort and money, a review 
deemed it unlikely to succeed, due in part to 
insufficient sampling intensity (National Research 
Council 1995).  

Sampling design is critical to the effectiveness of a 
monitoring program (Dixon et al. 1998) because it 
determines the quality of the resulting parameter 
estimates (Thompson et al. 1998). In many instances, 
the parameter of interest is a long-term trend in 
population size or community structure. The ability of 
a design to provide reliable trend estimates can be 
interpreted as the probability that it will detect a trend, 
should one exist. Statistical power is a suitable 
measure to gauge the influence of sample effort on 
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 data quality (e.g., Peterman 1990, Gibbs et al. 1998). 

A low-power monitoring program will have little 
chance of detecting all but catastrophic trends, thereby 
providing an illusion of stability and preventing 
remedial action required to conserve biodiversity 
(Fairweather 1991).  

Fig. 1. Generalized large-scale avian monitoring program 
design assumed during efficiency analysis.  

 

The power to detect a trend of specified magnitude, 
with a given level of significance, is negatively related 
to variability and positively related to sample effort. 
Although increasing sample effort increases power to 
detect trend, excessive sampling wastes limited 
monitoring resources (Bernstein and Zalinski 1983). 
Extensive monitoring requirements that must be met 
under budgetary constraints have made cost-effective 
monitoring a research priority (Committee on 
Environment and Natural Resources 1996, Schneider 
et al. 1999). Funding limitations impose trade-offs 
between the allocations of effort to sample effort 
components, which compete for monitoring resources 
(Millard and Lettenmaier 1986). It follows that cost-
effective monitoring design requires an understanding 
of the efficiency of allocating effort to sample effort 
components.  

 

METHODS 
Here we investigate cost-effective sampling strategies 
for large-scale avian monitoring. As a group, birds are 
suited to monitoring beause there are well-established 
(Bibby et al. 1992) and efficient (e.g., Croonquist and 
Brooks 1991) sampling protocols that achieve 
informative data due to the diverse responses of bird 
species to disturbance (Steele et al. 1984). We evaluate 
monitoring strategies in the context of the forested 
region of Alberta, Canada, where development of a 
large-scale forest biodiversity monitoring program is 
underway (Farr et al. 1999).  

To identify cost-effective sampling strategies, power 
and cost analyses were integrated. The power of 
sampling designs to detect trends in a selection of bird 
species and community metrics was estimated by 
simulating monitoring data, using mean and variance 
parameters estimated from empirical data. Based on 
the power estimates, a functional relationship between 
sample effort and power was derived for each 
monitoring target. A functional relationship between 
sample effort and cost was also identified. Partial 
derivatives of the functional relationships were taken 
to estimate rates of power and cost gain with sample 
effort. Comparison of these rates across sample effort 
parameters identified cost-effective sampling 
strategies.  

The design of a large-scale avian monitoring program 
can be generalized as follows (Fig. 1). Sampling 
occurs at multiple sites located randomly or 
systematically within the region of interest. Sampling 
spans multiple years, although monitoring may not 
occur every year. Within a sample year, sites are 
surveyed one or more times. At each site, birds are 
counted using one or more point-count stations, the 
preferred counting method for large-scale monitoring 
in forested regions (Verner 1988). We focus on the 
power and cost trade-offs implicit in allocating effort 
to the number of sites, the frequency with which these 
sites are sampled, and the number of stations and 
surveys used to sample the sites.  

Estimation of avian mean and variance 
parameters 

Stochastic variability enters data collected via three 
components, according to Fig. 1. Data fluctuate at a 
site across years because of temporal variability in 
abundance and sample (methodological) error, which 
are captured by the within-site temporal variance (τ1

2) 
component. Sample error, which includes both 
variation in the proportion of birds present that are 
detectable, e.g., singing (due to factors such as 
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Species and community metric selection weather) and variation in the proportion of birds that 
are detected due to observer ability, is expected to 
decrease with increased sample effort. This effect was 
evaluated by estimating τ1

2 at multiple levels of 
within-site effort. In addition to temporal variability, 
data fluctuate spatially in two ways. The distribution 
of individuals across sites at the start of the monitoring 
period is not uniform, and is accounted for by 
between-site initial variance (τ2

2). Trend magnitude 
also varies across sites about the regional trend mean, 
and is accounted for by between-site trend variance 
(τ3

2). Because sample error is included in τ1
2, it was 

extracted from spatial variance estimates to the extent 
possible, to avoid double counting. Simulation of data 
therefore required estimation of τ1

2, τ2
2, τ3

2, as well as 
mean initial abundance (θ0). Because we were 
interested in evaluating monitoring program design for 
the boreal forest of Alberta, data collected from this 
region were used for parameter estimation. τ1

2 and θ0 
were estimated using data collected at three 100-ha 
control sites near Calling Lake, in north-central 
Alberta, over a 6-year period (1993–1998). The sites, 
part of a long-term experimental fragmentation study 
(Schmiegelow et al. 1997), occur in boreal mixed-
wood forest, an ecotype representative of much of 
northern Alberta. At each site, 20 stations were 
sampled four times each year (surveys) during the 
breeding season (from late May to late June), at 10-d 
intervals, using 5-min point counts. Control sites (old 
forest devoid of forestry activity) were used to 
minimize the effect of non-natural (treatment) 
variation, which can exaggerate within-site temporal 
variation (Gibbs et al. 1998). τ2

2 and τ3
2 were 

estimated using Breeding Bird Survey (BBS) data 
(USGS Patuxent Wildlife Research Center 2000) 
collected from the closed boreal forest physiographic 
region of Alberta. The BBS is a volunteer-based long-
term monitoring program spanning Canada and the 
United States. The program consists of routes that are 
sampled by volunteers each year during the breeding 
season (May or June). At each route, birds are sampled 
at 50 point count stations, each 3 min in duration, 
along 24.5-mile [39.4 km] routes (see Droege [1990] 
for additional BBS design information). All variance 
parameters were estimated as coefficients of variation 
(standard deviation divided by the mean) to make the 
estimates suitable for use in simulation studies. Details 
on parameter estimation are available in Appendix 1.  

To include species covering the spectrum of variance 
characteristics, we selected them using a plot of τ1

2 
and τ2

2 estimates. As broad community measures, total 
species richness, species richness of the ground-
nesting guild (see Appendix 1), and the Shannon-
Weiner diversity index (Margalef 1958) were also 
included.  

Power simulations 

Power of 160 sampling designs (Table 1) was 
estimated for each species and community metric, 
using mean abundance and variance estimates in a 
Monte Carlo simulation approach (Appendix 2), 
following the methodology of Gibbs et al. (1998). 
Simulated trends were exponential and 20 years in 
length, with magnitudes of –3% and –1% per year for 
populations and community metrics, respectively.  

 

Table 1. Sampling designs for a large-scale avian 
monitoring program evaluated in power simulations.  

Effort parameter Effort levels 

Number of sites 10, 20, 30, 40, 50 
Sampling frequency (sample years) 5, 6, 8, 11, 21 
Number of point-count stations 4, 9, 16 
Number of surveys 1, 2, 3, 4 

 

Modeling the effect of sample effort on power 
and cost 

Multiple regression was applied to develop models for 
each target that expressed power as a function of 
sample effort. A linear model was unsuitable due to 
the asymptotic nature of power as it approaches the 
100% maximum. Instead, power estimates were fit to 
the following nonlinear model: 
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where a0-10 are model coefficients and s, f, p, and r are 
number of sites, sample frequency, point-count 
stations, and surveys, respectively. The model was fit 
to the power estimates by minimizing the residual sum 
of squares using procedure NLS in S-Plus (MathSoft 
1999). Residual analysis indicated no violations of 
normality and homogeneity assumptions. A model 
relating sample effort to program cost is presented in 
Appendix 3.  

Determining efficient sampling strategies 

To evaluate the efficiency of allocating sample effort 
to each effort parameter, we estimated partial 
derivatives of the power and cost models for each 
effort parameter. Partial derivatives were interpreted as 
the increase in power or cost achieved by increasing 
the number of sites, sample frequency, point-count 
stations, or surveys by one, within the range of effort 
levels simulated (Table 1). Average effort levels of 
designs achieving between 80% and 90% power for 
each species/community metric were used to solve 
partial derivatives, in order to evaluate the efficiency 
of sampling strategies in close proximity to the 90% 
power goal. The significance of power partial 
derivatives, which were estimated from regression 
models, was tested using z tests. The standard errors of 
partial derivatives were estimated using the Krinsky-
Robb method (Krinsky and Robb 1986). This required 
generation of 10,000 coefficient vectors by drawing 
random vectors from a multivariate normal 
distribution with mean and variance as estimated from 
nonlinear regression. Using the generated coefficient 
vectors, we calculated 10000 partial derivatives to 
approximate the distribution of the partial derivative, 
from which standard error was calculated. Normally 
distributed residuals from the regressions validated the 
required assumption of multivariate normality (Myers 
1990).  

Because power and cost were expressed in different 
units, it was necessary to convert partial derivatives to 
proportions for comparison. For example, partial 
derivatives of power related to each effort parameter 
were divided by the sum of power partial derivatives 
across effort parameters. We calculated 95% 
confidence intervals of power proportions by 
estimating 10,000 power proportions using the 
approximated power partial derivative distributions, 
and eliminating the top and bottom 2.5% of the 
distributions. For a given effort parameter, if the 
power proportion was greater than the cost proportion, 
the rate at which power increased by allocating effort 

to that parameter, relative to the other parameters, was 
greater than the rate at which cost increased, indicating 
efficiency. If, on the other hand, the cost proportion 
was greater, the cost of allocating effort to that 
parameter, relative to the other parameters, was greater 
than the power gains achieved, indicating inefficiency. 

 

Fig. 2. Temporal and spatial variability in bird species 
abundance and community metrics. Variance is expressed as 
coefficients of variation. Temporal variance refers to within-
site temporal variance calculated using data collected near 
Calling Lake, Alberta, Canada from 1993 to 1998 using 20 
point-count stations per site and four surveys per year. 
Spatial variance refers to between-site initial variation 
calculated using BBS (Breeding Bird Survey) data (from the 
closed boreal forest physiographic region of Alberta) 
collected from 1992 to 1998. The horizontal and vertical 
lines dissecting the plot represent mean between-site initial 
variation and median within-site temporal variation, 
respectively, across all species, excluding those with 
maximum within-site temporal variation (2.449). Median 
within-site temporal variance was used because of the 
skewed distribution of the parameter across species. An 
extreme and a moderate example were selected from each of 
the four variance categories delineated by the plot for 
inclusion in the efficiency analysis, for a total of eight 
species. The four-letter codes identify the eight species and 
three community metrics selected as targets for simulation 
studies: BCCH, Black-capped Chickadee Parus 
atricapillus; BGNW, Black-throated Green Warbler 
Dendroica virens; BHCO, Brown-headed Cowbird 
Molothrus ater; GRJA, Gray Jay Perisoreus canadensis; 
PIWO, Pileated Woodpecker Dryocopus pileatus; WBNU, 
White-breasted Nuthatch Sitta carolinensis; WTSP, White-
throated Sparrow Zonotichia albicollis; YWAR, Yellow 
Warbler Dendroica petechia; SR, species richness; GN, 
richness of the ground-nesting guild; SW, Shannon-Weiner 
diversity index.  
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Table 2. Within-site temporal variance estimates (τ1
2), expressed as coefficients of variation. Two estimates are provided for 

each species at each within-site effort level. The first estimate was generated using fixed timing of surveys, whereas the 
second estimate was generated using variable timing of surveys. Target codes are as in Fig. 2. Variance estimates are derived 
from data collected near Calling Lake, Alberta, Canada from 1993 to 1998. 

No. surveys, four stations   No. surveys, nine stations   No. surveys, 16 stations Target 
species     
  1 2 3 4   1 2 3 4   1 2 3 4 

BCCH 2.389 
2.327 

2.274 
2.188 

2.020 
2.003 

1.903 
1.903 

  2.185 
2.120 

1.922 
1.834 

1.732 
1.657 

1.570 
1.570 

  2.035 
1.887 

1.740 
1.610 

1.455 
1.385 

1.264 
1.264 

                
BGNW 1.219 

1.073 
0.806 
0.809 

0.734 
0.680 

0.615 
0.615 

  0.773 
0.718 

0.544 
0.514 

0.470 
0.442 

0.407 
0.407 

  0.605 
0.562 

0.442 
0.427 

0.367 
0.381 

0.348 
0.348 

                
BHCO 1.978 

2.096 
1.747 
1.887 

1.689 
1.730 

1.629 
1.629 

  1.659 
1.839 

1.464 
1.516 

1.448 
1.349 

1.229 
1.229 

  1.422 
1.578 

1.399 
1.314 

1.331 
1.102 

0.925 
0.925 

                
GRJA 1.849 

2.391 
1.849 
2.320 

1.849 
2.284 

2.326 
2.326 

  1.849 
2.387 

1.849 
2.269 

1.849 
2.257 

2.256 
2.256 

  1.549 
2.296 

1.549 
1.937 

1.549 
1.830 

1.848 
1.848 

                
PIWO 2.449 

2.406 
2.449 
2.322 

2.449 
2.260 

2.064 
2.064 

  2.449 
2.410 

2.449 
2.269 

2.449 
2.131 

1.857 
1.857 

  2.449 
2.256 

2.449 
1.977 

2.449 
1.607 

1.314 
1.314 

                
WBNU 2.449 

2.449 
2.449 
2.449 

2.499 
2.449 

1.999 
1.999 

  2.449 
2.387 

2.449 
2.314 

1.999 
2.299 

2.224 
2.224 

  2.449 
2.366 

2.449 
2.202 

1.549 
2.127 

1.999 
1.999 

                
WTSP 0.671 

0.615 
0.468 
0.460 

0.406 
0.391 

0.357 
0.357 

  0.573 
0.513 

0.383 
0.383 

0.353 
0.340 

0.313 
0.313 

  0.484 
0.439 

0.350 
0.346 

0.327 
0.304 

0.276 
0.276 

                
YWAR 1.801 

1.525 
1.358 
1.250 

1.158 
1.096 

0.991 
0.991 

  1.462 
1.277 

1.087 
1.041 

1.036 
0.890 

0.795 
0.795 

  1.218 
1.138 

0.964 
0.894 

0.990 
0.768 

0.688 
0.688 

                
SR 0.206 

0.234 
0.153 
0.162 

0.143 
0.139 

0.122 
0.122 

  0.141 
0.200 

0.100 
0.139 

0.099 
0.111 

0.105 
0.105 

  0.117 
0.186 

0.089 
0.123 

0.092 
0.099 

0.086 
0.086 

                
GN 0.329 

0.321 
0.231 
0.249 

0.230 
0.216 

0.185 
0.185 

  0.247 
0.279 

0.168 
0.209 

0.183 
0.172 

0.160 
0.160 

  0.247 
0.232 

0.158 
0.201 

0.164 
0.162 

0.124 
0.124 

                
SW 0.100 

0.129 
0.069 
0.077 

0.057 
0.057 

0.046 
0.046 

  0.062 
0.080 

0.044 
0.054 

0.035 
0.043 

0.033 
0.033 

  0.047 
0.069 

0.029 
0.046 

0.023 
0.033 

0.026 
0.026 

 

 

RESULTS 

In addition to the three community metrics, eight 

species were selected for the analysis (Fig. 2), two 
from each of the following categories: ubiquitous (low 
spatial and temporal variance), temporally fluctuating 
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(low spatial and high temporal variance), spatially 
patchy (high spatial and low temporal variance), and 
irruptive (high spatial and temporal variance). 
Averaged across selected species and community 
metrics, τ2

2 was greatest in magnitude (1.143 for 
species and 0.203 for community metrics), followed 
by τ1

2 (1.083 and 0.0787) and τ3
2 (0.303 and 0.0507). 

Full presentation of parameter estimates, including the 
influence of within-site effort on τ1

2, is provided in 

Tables 2–5. Relationships between variability and 
species abundance were explored by ranking the order 
of abundance and calculating a correlation coefficient 
for each variance parameter. There was a strong 
negative relationship between abundance and τ1

2 (r = -
0.976; P = 0.000). Abundance rank was also 
negatively correlated with the other two parameters, 
although the relationships were weaker (r = -0.714; P 
= 0.047 for τ2

2 and r = -0.476; P = 0.233 for τ3
2). 

 

Table 3. Between-site initial variance (τ2
2) and between-site trend variance (τ3

2) estimates, expressed as coefficients of 
variation. Target codes are as in Fig. 2. Variance estimates are derived from BBS (Breeding Bird Survey) data collected from 
the closed boreal forest physiographic region of Alberta, Canada from 1992 to 1998 (τ2

2) and 1989 to 1998 (τ3
2).  

Target BCCH BGNW BHCO GRJA PIWO WBNU WTSP YWAR SR GN SW 

τ2
2 0.793 2.254 1.257 0.666 1.410 0.491 0.557 0.716 0.222 0.283 0.104 

τ3
2 0.487 0.167 0.404 0.301 0.290 0.449 0.139 0.188 0.038 0.050 0.064 

In general, power increased with each sample effort 
parameter (Figs. 3–6). Power was highly sensitive to 
τ1

2, moderately sensitive to τ2
2, and only minimally 

sensitive to τ3
2 (Table 6). Eq. 1 effectively modeled 

the relationship between power and sample effort, 
explaining much of the variability in power estimates 
(R2 = 0.94 – 0.98). Models were not generated for 
species or community metrics for which all sampling 
designs achieved > 90% power. This excluded the 
Shannon-Weiner diversity index, species richness, and 
the White-throated Sparrow (Zonotrichia albicollis). 
Power to detect trend increased as the cost of 
monitoring programs increased, although the 
relationship was highly nonlinear (Fig. 7). Power 
partial derivatives were generally positive and 
significant (Table 7), as were cost partial derivatives 
except for point-count stations, reflecting the 
assumption that increasing the number of stations 
across the range simulated (4–16) incurred no 
additional cost (Appendix 3). This assumption, 
combined with positive rates of increase in power with 
point-count stations, implied efficiency. Thus point-
count stations were excluded from further analysis. 
Table 8 presents results of the efficiency analysis, 
evaluated with reference to sampling designs 
achieving between 80% and 90% power. To evaluate 
the sensitivity of efficiencies to power level, the 
analysis was repeated using average effort levels from 
designs achieving: <60%, 60–70%, 70–80%, and 

>90% power. Efficiencies were consistent across 
power intervals, with the exception of the efficiency of 
surveys for the Yellow Warbler (Dendroica petechia) 
and for species richness of the ground-nesting guild. 
Although surveys were marginally efficient for these 
targets when designs achieved > 80% power, they 
were marginally inefficient when designs achieved < 
80% power.  

DISCUSSION 

Recent political support for biodiversity monitoring is 
providing new opportunities to obtain spatially and 
temporally extensive data sets. Maximizing these 
opportunities to achieve exciting new analyses 
requires efficient use of available funding. We 
identified cost-effective sampling strategies for forest 
birds, using existing data, power analysis, and 
statistical modeling.  

Variability of bird species and community 
metrics 

Because of the sensitivity of power to variability, and 
the wide range in variability across species, variance 
estimates were used to categorize and select targets for 
our analysis. Our four variance categories reflect 
species life-history traits. Species in the ubiquitous 
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category have broad niches that buffer them from both 
temporal and spatial environmental variation. In 
comparison, spatially patchy species have narrow 
niches that allow occupancy of only a subset of 
available habitat, although occupancy is consistent 
across years. Species in the temporally fluctuating and 
irruptive categories may be tied to temporally 
fluctuating habitat characteristics, such as food 

availability. Other species may appear to be 
temporally variable due to sampling issues. For 
example, the Pileated Woodpecker (Dryocopus 
pileatus) is not an irruptive species, but its large home 
range relative to the scale of point-count stations 
resulted in variable counts, even in the presence of a 
potentially stable population. 

 
Table 4. Mean abundance θ estimates for species and community metrics selected as targets for sample design evaluation. 
Two estimates are provided for each species at each within-site effort level. The first estimate was generated using fixed 
timing of surveys, whereas the second estimate was generated using variable timing of surveys. The number of surveys is 
indicated by r. Target codes are as in Fig. 2. Variance estimates are derived from data collected near Calling Lake, Alberta, 
Canada from 1993 to 1998. 

Target Four stations   Nine stations   16 stations 
      
  r = 1 r = 2 r = 3 r = 4   r = 1 r = 2 r = 3 r = 4   r = 1 r = 2 r = 3 r = 4 

BCCH 0.299 
0.291 

0.163 
0.214 

0.163 
0.163 

0.153 
0.153 

  0.380 
0.377 

0.259 
0.341 

0.258 
0.287 

0.281 
0.281 

  0.500 
0.572 

0.347 
0.525 

0.417 
0.457 

0.458 
0.458 

  
BGNW 1.694 

1.598 
1.729 
1.574 

1.483 
1.575 

1.579 
1.579 

  3.880 
3.638 

3.963 
3.586 

3.392 
3.652 

3.639 
3.639 

  7.139 
6.420 

7.181 
6.561 

6.185 
6.566 

6.563 
6.563 

  
BHCO 0.293 

0.294 
0.228 
0.205 

0.181 
0.183 

0.172 
0.172 

  0.463 
0.461 

0.407 
0.394 

0.333 
0.374 

0.365 
0.365 

  0.806 
0.718 

0.667 
0.637 

0.556 
0.601 

0.604 
0.604 

  
GRJA 0.389 

0.334 
0.194 
0.186 

0.130 
0.140 

0.108 
0.108 

  0.389 
0.349 

0.194 
0.215 

0.130 
0.154 

0.125 
0.125 

  0.500 
0.440 

0.250 
0.364 

0.167 
0.286 

0.229 
0.229 

  
PIWO 0.250 

0.208 
0.125 
0.118 

0.083 
0.084 

0.077 
0.077 

  0.375 
0.252 

0.188 
0.158 

0.125 
0.125 

0.117 
0.117 

  0.417 
0.336 

0.208 
0.206 

0.139 
0.194 

0.188 
0.188 

  
WBNU 0.167 

0.182 
0.083 
0.092 

0.056 
0.063 

0.049 
0.049 

  0.167 
0.211 

0.083 
0.115 

0.083 
0.080 

0.066 
0.066 

  0.167 
0.236 

0.083 
0.134 

0.111 
0.099 

0.083 
0.083 

  
WTSP 4.426 

5.108 
4.632 
5.041 

4.972 
5.092 

5.076 
5.076 

  9.926 
11.27 

10.44 
11.35 

11.16 
11.37 

11.38 
11.38 

  17.33 
20.09 

18.22 
19.89 

19.42 
19.90 

19.91 
19.91 

  
YWAR 0.637 

0.997 
0.757 
0.928 

0.798 
0.923 

0.922 
0.922 

  1.273 
1.992 

1.581 
1.979 

1.671 
1.988 

1.998 
1.998 

  1.944 
3.085 

2.375 
3.133 

2.602 
3.144 

3.146 
3.146 

  
SR 11.81 

11.19 
15.29 
15.63 

17.24 
18.43 

20.43 
20.43 

  16.73 
15.84 

20.57 
21.05 

23.14 
24.44 

26.77 
26.77 

  20.39 
19.34 

24.58 
25.63 

27.44 
29.16 

31.64 
31.64 

  
GN 3.898 

3.635 
4.588 
4.668 

4.903 
5.282 

5.731 
5.731 

  4.972 
4.700 

5.556 
5.881 

5.954 
6.580 

7.139 
7.139 

  5.611 
5.437 

6.222 
6.848 

6.722 
7.628 

8.306 
8.306 

  
SW 3.179 

3.062 
3.417 
3.409 

3.486 
3.562 

3.640 
3.640 

  3.558 
3.459 

3.689 
3.705 

3.742 
3.798 

3.855 
3.855 

  3.733 
3.641 

3.814 
3.838 

3.860 
3.918 

3.956 
3.956 

 

 
 

http://www.consecol.org/vol6/iss2/art11


Conservation Ecology 6(2): 11. 
http://www.consecol.org/vol6/iss2/art11 

 

Ubiquitous species will be easiest to monitor, due to 
the negative relationship between species abundance 
and the variance parameters. Their broad habitat 
requirements, however, imply less sensitivity to 
disturbance, reducing their value for monitoring. Rare 
species, although of greater monitoring interest, will 
require increased sampling intensity to mitigate high 
sample error (Link et al. 1994), as well as high natural 
variability, perhaps caused by specialized habitat 
requirements. If the expense associated with 

monitoring such species is prohibitive, careful 
selection of target species that are sensitive to 
disturbance, yet exhibit low variability, is 
recommended. Temporal variation tends to influence 
power to a greater extent than does spatial variation. 
Species in the spatially variable category (i.e., the 
Black-throated Green Warbler, Dendroica virens), 
may be examples of efficient targets because of their 
habitat specificity and relative temporal stability. 

 
Table 5. Percentage reductions in within-site variance (τ1

2) due to increasing the number of surveys and stations and using 
fixed rather than randomly scheduled surveys. The response of τ1

2 to the number of surveys was evaluated as the percentage 
reduction in τ1

2 caused by increasing the number of surveys from one to four, averaged across the three station levels 
(assuming fixed survey schedules). The response of τ1

2 to the number of stations was evaluated as the percentage reduction in 
τ1

2 caused by increasing the number of stations from four to 16, averaged across the four survey levels (assuming fixed 
survey schedules). To evaluate the influence of timing of the surveys, the percentage reduction in τ1

2 caused by using fixed 
rather than randomly scheduled surveys, averaged across all effort levels except when surveys equalled four, was calculated. 
Target codes are as in Fig. 2. Variance estimates are derived from data collected near Calling Lake, Alberta, Canada from 
1993 to 1998.  

  Reduction (%) in τ1
2 

  
Target Due to 

surveys 
Due to 
stations 

Due to survey timing 

BCCH 28.79 25.04  -4.53 
BGNW 46.46 47.24  -5.39 
BHCO 26.17 28.11    0.44 
GRJA -22.37  17.31  21.01 
PIWO 28.75  9.08 -13.88 
WBNU 15.31  9.50    1.67 
WTSP 45.05 23.81   -5.46 
YWAR 44.70 26.62  -12.39 
  
  Species average 26.61 23.34   -0.02 
  
SR 30.93 37.55  17.20 
GN 42.93 29.55    4.07 
SW 48.49 53.52  21.29 
  
  Metric average 40.78 40.21  14.19 

 

Monitoring of community metrics provides an 
alternative. In this study, all community metrics 
exhibited less variance than even the most common 
species, which translated into low sample effort 
requirements. However, two issues must be resolved. 
First, the sensitivity of community metrics to 
disturbance must be determined. We used a smaller 

magnitude change in community metric power 
analyses to account for a presumed reduction in 
sensitivity to disturbance, relative to populations of 
species. The magnitude of the reduction was 
subjective, however, and may not have adequately 
accounted for the relative stability of community 
metrics. Second, it is not clear which community 
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metric, or combination of metrics, provides 
meaningful information on the status of the bird 
community, and interpretation of community metrics 
is difficult. Nevertheless, the relative low cost of 
monitoring community metrics is promising and 
warrants increased research into their use.  

Power estimates, and therefore our conclusions 
regarding cost-effective sampling strategies, were 
contingent on assumptions made when estimating 
variance parameters. A discussion of these 
assumptions is presented at the end of Appendix 1. 

 

Table 6. Sensitivity of power to within-site variance (τ1
2), 

between-site initial variance (τ2
2), and between-site trend 

variance (τ3
2). For each parameter, the power to detect -3% 

trends over 20 years was estimated at maximum and 
minimum values of the parameter as estimated across 
species and effort levels, while keeping the other parameters 
constant at their average value across species and effort 
levels and keeping the number of sites and the sampling 
frequency at minimum levels (10 sites sampled every five 
years). Sensitivity was then calculated by subtracting power 
at the maximum value from power at the minimum value of 
that variance parameter. 

Variance 
parameter 

τ1
2 τ2

2 τ3
2 

Sensitivity of 
power 0.551 0.116 0.055 

 

Cost-effective sampling strategies 

Although all effort parameters generally had a positive 
and significant influence on power, the magnitude of 
their influence and costs differed. Therefore, to 
establish efficient sampling design strategies, we 
compared rates of increase in power to rates of 
increase in cost across effort parameters. To focus on 
the response of power and cost to sample effort near 
the 90% power goal, we used average effort levels 
across designs achieving between 80% and 90% 
power. Efficiencies were consistent across power 
levels, however, indicating that the cost-effective 
sampling strategies reported here are not restricted to 
designs achieving between 80% and 90% power. 
Because optimal effort allocation depends on the 
relative magnitude of variance parameters (Bernstein 

and Zalinski 1983), one would expect sampling 
efficiencies to vary across monitoring targets that 
exhibit different variance characteristics. The inclusion 
of multiple species and community metrics allowed 
comparison of sampling efficiencies across different 
targets, which identified consistent sampling 
efficiencies across targets, and efficiencies contingent 
on the variance characteristics of the monitoring 
target. 

 

Fig. 3. Response of power to the number of sites as 
estimated using Monte Carlo simulations. In the figure, the 
number of sites is varied across the range, while the 
remaining sample effort parameters are kept fixed at 
minimum levels (sampling every five years, four point-
count stations, and one survey). Species and community 
metric codes are as in Fig. 2. Species are listed from highest 
to lowest power within each group in the legend.  

 
 

When designing a monitoring program, one must 
decide whether to monitor more sites infrequently, or 
fewer sites frequently. Allocation of effort to the 
number of sites was efficient for all monitoring targets, 
suggesting that increasing site density is a component 
of an efficient avian monitoring design (see also Link 
et al. 1994). Previous evaluation of the power of long-
term avian sampling designs has assumed that 
sampling occurs every year (e.g., Gibbs and Melvin 
1997, Gibbs et al. 1998, Lewis and Gould 2000). 
However, high sampling frequency is costly. We used 
simulations to estimate power for a range of sampling 
frequencies to evaluate the efficiency of allocating 
effort to sampling frequency. In general, the rate at 
which power increased with sample frequency was 
greater for temporally variable species. For temporally 
stable monitoring targets, however, the increase in data 
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quality achieved by increasing sampling frequency 
was small, and thus inefficient. These results suggest 
that more sites should be sampled relatively 
infrequently, although higher sampling frequency will 
be required for temporally variable targets. The 
number of sites rises in importance when sampling 
uncommon species, if sites with zero counts over the 
study period are eliminated from the analysis, as is the 
case with the BBS (Thomas 1997). This effectively 
reduces the sample size, so that the number of sites 
must be increased to account for the proportion 
expected to have zero counts. Similarly, more frequent 
monitoring will be necessary if detection of cyclical or 
irregular trends is required, rather than the constant 
trends simulated here (Scott 1998). If counts are 
expected to vary coherently across sites about a 
temporal trend (i.e., if they exhibit cyclic tendency), 
panel designs are an efficient strategy whereby some 
sites are sampled more frequently than others 
(Urquhart et al. 1998). 

 

Fig. 4. Response of power to sample frequency as estimated 
using Monte Carlo simulations. In the figure, sample 
frequency is varied across its range, while keeping the 
remaining sample effort parameters fixed at minimum levels 
(10 sites, four point-count stations, and one survey). Species 
and community metric codes are as in Fig. 2. Species are 
listed from highest to lowest power within each group in the 
legend.  

 
 

Two strategies for reducing sample error were 
evaluated: increasing the number of point-count 
stations and increasing the number of surveys at a 
station within a year. Sampling the maximum number 
(16) of point-count stations considered was always 
efficient because it increased power and incurred no 

additional cost compared to sampling fewer point 
count stations. Although sampling of additional  

 

Fig. 5. Response of power to the number of point-count 
stations as estimated using Monte Carlo simulations. In the 
figure, the number of point-count stations is varied across its 
range, while keeping the remaining sample effort 
parameters fixed at minimum levels (10 sites, sampling 
every five years, and one survey). Species and community 
metric codes are as in Fig. 2. Species are listed from highest 
to lowest power within each group in the legend.  

 
 

Fig. 6. Response of power to the number of surveys, as 
estimated using Monte Carlo simulations. In the figure, the 
number of surveys is varied across its range, while keeping 
the remaining sample effort parameters fixed at minimum 
levels (10 sites, sampling every five years, and four point-
count stations). Species and community metric codes are as 
in Fig. 2. Species are listed from highest to lowest power 
within each group in the legend.  
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stations is not, in reality, free, the associated cost will 
be minimal compared to the cost of accessing sites, 
particularly where access is limited. In our case, one 
crew could visit only a single site on a given day due 
to logistical constraints, and could sample up to 16 
point-count stations. As long as additional within-site 
sampling (i.e., point-count stations) reduces sample 
error, high within-site, within-survey sample effort 
should be a component of a large-scale monitoring 
program. Repeated surveys within a year, on the other 
hand, were generally inefficient. Although they are 
marginally efficient for some temporally stable species 
and metrics, multiple surveys will usually be 
unnecessary to detect trends in these targets. Surveys 

were dramatically inefficient for species requiring high 
sample effort to detect trends, suggesting that repeated 
visits to a site within a year are not cost-effective (see 
also Link et al. 1994). Allocating effort to achieve 
consistent timing of surveys across years was also 
inefficient, based on the negligible effect of timing on 
temporal variance. This result is fortunate, as 
consistent timing of surveys is difficult to achieve in 
large-scale monitoring. However, if potential sample 
dates were to extend beyond the one-month period 
during which our baseline data were collected (i.e., the 
peak of breeding activity for many species), the 
importance of survey timing should increase. 

 
Table 7. Rates of change (and P values) in power to detect -3% per year trends in species’ abundance and -1% per year 
trends in community metrics over 20 years, for four sample effort parameters. Rates of change for each species/community 
metric were calculated by taking partial derivatives of the power model and solving using average effort levels of designs 
achieving between 80% and 90% power for each species/community metric. Species and community metric codes are as in 
Fig. 2.  

Species No. sites No. sample years No. point-count 
stations 

No. surveys 

BCCH 0.0058  (0.000) 0.0133  (0.000) 0.0095  (0.000) 0.0237  (0.000) 
BGNW 0.0114  (0.000) 0.0016  (0.000) 0.0169  (0.000) 0.0643  (0.000) 
BHCO 0.0062  (0.000) 0.0100  (0.000) 0.0104  (0.000) 0.0296  (0.000) 
GRJA 0.0054  (0.000) 0.0145  (0.000) 0.0046  (0.000) -0.0003  (0.891) 
PIWO 0.0052  (0.000) 0.0142  (0.000) 0.0068  (0.000) 0.0224  (0.000) 
WBNU 0.0058  (0.000) 0.0137  (0.000) 0.0016  (0.000) 0.0026  (0.147) 
YWAR 0.0156  (0.000) 0.0043  (0.000) 0.0053  (0.000) 0.0470  (0.000) 
GN 0.0265  (0.000) 0.0075  (0.000) 0.0125  (0.000) 0.1431  (0.000) 
  
Average    0.0103    0.0098    0.0084     0.0416 

 

Extending the analysis to additional taxa 

Comprehensive monitoring of biodiversity must 
include diverse taxa. This ambitious goal might best be 
achieved through a single, broad-based biodiversity 
monitoring program, rather than a collection of 
specialized programs. To facilitate design of such a 
program, our analysis should be extended to multiple 
taxa. An extensive search for data sets to facilitate 
parameter estimation for our study area revealed 
severe limitations (S. Rangen and W. Schaffer, 
unpublished report). In shortest supply were data 
collected across multiple years (necessary to estimate 
τ1

2 and τ3
2); in addition to birds, such data were only 

available for components of terrestrial vegetation and 
aquatic macroinvertebrates. This stresses the need for 

implementation of long-term monitoring programs.  

Alternative sample design 

We interpreted the problem of designing a cost-
effective monitoring program as achieving high power 
to detect trend at low cost. An alternative framework is 
an optimal experimental design (Silvey 1980), in 
which sample design is viewed as a constrained 
optimization problem. The goal is to select the design 
that achieves maximum information under design 
constraints, such as cost. A model is assumed for the 
phenomenon of interest, and the analysis proceeds 
through an evaluation of the inverse of the error 
covariance matrix of the best linear unbiased 
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estimator. This matrix, known as the Fisher 
information matrix, contains information about 
measurement errors and parameter sensitivities, 

allowing the quality of parameter estimates achieved 
by a design to be quantified (Versyck et al. 1999). 

 
Table 8. Relative efficiencies (and 95% confidence intervals) of effort parameters for detecting 20-year trends in various 
targets. Elements in the table represent power proportions divided by cost proportions for each effort parameter, excluding 
stations. An efficiency value greater than one indicates that the effort parameter is efficient. Target codes are as in Fig. 2.  

Target Sites   Frequency   Surveys 
      
  Mean CL   Mean CL   Mean CL 

BCCH 2.315 (2.186, 
2.457) 

  1.591 (1.476, 
1.716) 

  0.742 (0.701, 
0.779) 

BHCO 2.138 (2.037, 
2.252) 

  1.104 (1.014, 
1.196) 

  0.875 (0.844, 
0.904) 

BGNW 1.159 (1.109, 
1.211) 

  0.138 (0.112, 
0.164) 

  1.146 (1.136, 
1.156) 

GRJA 5.121 (4.256, 
6.413) 

  4.833 (4.043, 
6.011) 

  -0.017 (-0.330, 
0.192) 

PIWO 2.117 (1.952, 
2.307) 

  1.884 (1.722, 
2.068) 

  0.704 (0.648, 
0.753) 

WBNU 4.668 (4.027, 
5.545) 

  5.134 (4.446, 
6.075) 

  0.141 (-0.057, 
0.286) 

YWAR 1.686 (1.622, 
1.751) 

  0.356 (0.312, 
0.399) 

  1.030 (1.013, 
1.047) 

  
GN 1.532 (1.409, 

1.658) 
  0.374 (0.328, 

0.420) 
  1.024 (1.006, 

1.040) 

 

Fig. 7. Power to detect –3% per year exponential trends in 
Black-capped Chickadee abundance over 20 years vs. 
annual program cost. Each circle represents one of the 160 
sampling designs evaluated (see Table 1). Power is 
estimated using Monte Carlo simulations; cost is estimated 
using a simplified cost model (Appendix 3).  

 
 

There is a fundamental difference in the monitoring 
philosophies implicit in power analysis and optimal 
design. Our power analysis assumed that the 
monitoring goal is regional detection of long-term 
trends using fixed sites randomly located within the 
region of interest. There is no consideration of site 
attributes, such as disturbance or habitat type. Such a 
program is not designed to answer a particular 
question, such as the effect of a disturbance type on 
biodiversity, but simply to detect broad-scale changes 
in biodiversity, regardless of the cause. This does not 
maximize information gain, nor can it link biodiversity 
trends with causal factors. Thus it restricts the 
translation of monitoring findings into policy change. 
Optimal experimental design takes a very different 
approach. Treatment levels at potential sites are 
explicitly considered in the design, in order to achieve 
the best estimate of the parameter of interest. Such a 
design has greater potential for providing estimates of 
the effect of specific management policies on 
biodiversity, thereby facilitating adaptive 
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management. However, the long-term utility of such a 
monitoring program may be limited. Data from a 
program optimally designed to answer today’s 
questions are unlikely to address tomorrow’s 
environmental dilemmas.  

The two design strategies produce different styles of 
monitoring programs, each with its strengths and 
weaknesses. Instead of relying solely on either 
strategy, a hybrid approach would exploit the strengths 
of both. This would consist of optimal designs that 
track the effects of specific disturbances, 
superimposed on a large-scale design that achieves 
regional trend estimates with high power. 

Responses to this article can be read online at: 
http://www.consecol.org/vol6/iss2/art11/responses/index.html 
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APPENDIX 1. Avian Mean and Variance Parameters 

Mean and variance parameter estimation methods 

To estimate θ0and τ1
2, the mean response and coefficient of variation at each Calling Lake (Alberta, Canada) site 

across the 6-year period was calculated and averaged across the three sites. The response at a site in a given year 
was total detections across all point-count stations averaged across surveys. Sites for which no individuals of 
target species were detected over the 6-year period were excluded to avoid undefined coefficients of variation. To 
evaluate the effect of within-site sample effort on τ1

2 and θ0, subsamples of the data set were taken and the 
parameters were estimated using the reduced data set. Within-site effort levels of 4, 9, and 16 stations and 1, 2, 3, 
and 4 surveys were evaluated, resulting in 12 estimates of θ0 and τ1

2 for each monitoring target. Two strategies 
were used when subsampling surveys. To simulate a monitoring program in which the timing of site visits can be 
kept constant from year to year, survey 2 was always sampled, and surveys 3, 4, and 1 were added successively as 
the number of surveys increased from two to four. To simulate a monitoring program in which timing of site visits 
cannot be kept constant from year to year, the surveys were randomly selected each year, without replacement. 
This process was repeated 100 times to achieve 100 subsamples of randomly selected surveys across the six years. 
When subsampling to reduce the number of stations, multiple estimates of τ1

2 and θ0 were generated for each site 
to represent the various contiguous arrangements of the reduced number of stations. The mean of these estimates 
was taken as an overall estimate for each site.  

We estimated τ2
2 as the response variance between BBS routes in the closed boreal forest region of Alberta within 

a year. This estimate reflected not only variability between routes, but also variability due to sample error at each 
route (Link et al. 1994). Sample error, already accounted for in τ1

2, was extracted to avoid double counting. To 
isolate spatial variation in abundance, we multiplied variance estimates by (1 - the proportion of between-route 
variance due to sampling error). Estimates of the proportion of BBS between-route variance due to sampling error 
(α) were taken from Link et al. (1994), who estimated this quantity using repeated counts at BBS routes within 
seasons. For species not evaluated by Link et al. (1994), α was estimated based on their finding that α is 
negatively related to abundance according to a regression of logit(α) on the natural logarithm of abundance. 
Sampling error could not be extracted for the community metrics that we examined because Link et al. (1994) did 
not evaluate sampling error at the community level. After extracting sampling error, we calculated the coefficient 
of variation in response across routes. Estimates were made using data collected from 1992 to 1998 (11–16 routes 
per year), and the average of these coefficients of variation was used to estimate τ2

2. To avoid undefined 
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coefficients of variation, we excluded years with zero mean response across routes from the analysis.  

We estimated τ3
2 as the variation in trend across BBS routes in the closed boreal forest region of Alberta between 

1989 and 1998. Although counts from 1989 to 1991 were not used to estimate τ2
2 due to reduced numbers of 

routes sampled in this time frame, they were included here to achieve longer trajectories and to enhance τ3
2 

estimates. No counts prior to 1989 were used, because of the infrequency of route visits in the region. For species, 
only routes satisfying the U.S. National Biological Service data selection criteria (Thomas 1997) were used in the 
analysis. After applying these criteria, data from four to 15 routes were available, depending on the species and 
community metric. The trend at each route was estimated by fitting the data to an exponential trend model, using 
software written by Thomas (1997). After estimating the variance of route trend, a coefficient of variation was 
calculated by dividing the square root of the variance estimate by the mean route trend.  

When calculating species richness and Shannon-Weiner community metrics from the Calling Lake and BBS data 
sets, we used all species in the data sets. When calculating species richness of the ground-nesting guild, we 
included the following species: Black and White Warbler,Mniotilta varia; Blackpoll Warbler, Dendroica striata; 
Canada Warbler, Wilsonia canadensis; Clay-colored Sparrow, Spizella pallida; Connecticut Warbler, Oporornis 
agilis; Dark-eyed Junco, Junca hyemalis; Hermit Thrush, Catharus guttatus; LeConte’s Sparrow, Ammodramus 
leconteii; Lincoln’s Sparrow, Melospiza lincolnii; Mourning Warbler, Oporornis philadelphia; Northern 
Waterthrush, Seiurus noveboracensis; Orange-crowned Warbler, Vermivora celata; Ovenbird, Seirus 
aurocapillus; Palm Warbler, Dendroica palmarum; Ruffed Grouse, Bonasa umbellus; Song Sparrow,Melospiza 
melodia; Swamp Sparrow, Melospiza georgiana; Tennessee Warbler, Vermivora peregrina; Wilson’s Warbler, 
Wilsonia pusilla; White-throated Sparrow, Zonotrichia albicollis; and Yellow-bellied Flycatcher, Empidonax 
flaviventris.  

Mean and variance parameter estimates 

Table 2, Table 3, and Table 4 present variance parameter and mean abundance estimates for selected species and 
community metrics. To summarize the effect of within-site sample effort on τ1

2, the response of τ1
2 to number of 

surveys, number of stations, and timing of surveys was calculated for each species and community metric (Table 
5).  

Assumptions and data limitations  

Our results are contingent on assumptions made during variance parameter estimation. Within-site temporal 
variance was estimated by calculating variance in abundance across years at three control sites. Control sites were 
assumed devoid of population trends, which would confound variance. This assumption appears to be valid, 
because a high level of sample effort failed to detect significant trends over the 6-year period for the eight species 
selected. As an alternative, Gibbs et al. (1998) estimated temporal variance from the residuals of a linear 
regression of counts against time, in order to remove trend from the counts and minimize the effect of non-natural 
variation. This method is only valid if a significant trend exists. Otherwise, it can underestimate temporal variance 
by allocating natural variation to a nonexistent trend. This may explain why the estimate of Gibbs et al. (1998) of 
temporal variation for small birds (coefficient of variation = 0.57) was lower than ours (mean coefficient of 
variation across species = 1.083). Underestimating temporal variance results in overly optimistic predictions of 
the effectiveness of proposed monitoring strategies. We evaluated how τ1

2 was affected by within-site sample 
effort. Two other factors that will also influence τ1

2 are consistency in sampling methodology and the person 
collecting data at the site. Both the Calling Lake study (Schmiegelow et al. 1997) and the BBS (Droege 1990) use 
consistent sampling methodology that includes specification of weather conditions and the time of day and year 
during which data can be collected. Similar strict requirements should be a component of all monitoring programs 
because they reduce sample error by reducing variation in the proportion of present birds that are singing. The 
ability to detect birds that are singing varies across people. Although some of this variation can be reduced 
through training, consistency in data collectors should be maintained as much as possible. Such consistency will 
be difficult to maintain in long-term monitoring programs, perhaps causing an increase in τ1

2.  
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Because sample error was accounted for in τ1
2, it was extracted from τ2

2 to avoid double counting, and therefore 
exaggeration, of sample error. Sample error was not extracted from τ3

2, however, because no estimates were 
available to do so. Although this may have caused exaggeration of τ3

2, the influence on power estimates is thought 
to be minimal due to its insensitivity to τ3

2 (see Table 6).  

Data limitations required us to use BBS data to estimate between-site variance parameters. The BBS design 
differs from the sampling design assumed here, which may reduce the accuracy of related estimates due to 
differences in sample error associated with the different methodologies. However, results should be insensitive to 
this difference because, of the two between-site variance parameters, one had little influence on power (τ3

2) and 
sample error was extracted from the other (τ2

2). Nevertheless, the most effective way to improve the data would 
be to implement a long-term monitoring program with a design based on estimates presented here. Over time, data 
from the monitoring program could be used to re-estimate variance parameters and reassess program design.  

One final caveat is that our power simulations assumed that the coefficient of variation remained stable across 
abundance levels within a species. Power will be exaggerated if coefficients of variation increase, or will be 
underestimated if they decrease, as abundance declines. However, sampling efficiencies will remain valid, unless 
spatial and temporal coefficients of variation are differentially affected.  

 

APPENDIX 2. Power Simulation Methodology 

Monte Carlo simulations were performed using numerical recipes from Press et al. (1992) and route regression 
code by Thomas (1997). We simulated 20-year trajectories for each site following an exponential model, which 
required specification of site-specific initial abundance and trend magnitude. Exponential trends were based on 
the assumption that populations experience constant rates of decline (Caughley and Sinclair 1994). Because 
achieving consistent timing of surveys from year to year is logistically difficult, randomly timed surveys were 
assumed. Initial abundance was determined by randomly selecting a deviate from N(θ0, τ2

2), truncated at zero. 
Similarly, trend magnitude was determined by randomly selecting a deviate from N(-3%, τ3

2) when generating 
population trajectories, and N(-1%, τ3

2) when generating community metric trajectories. Population trends of -3% 
per year were simulated because this is the effect size goal of the Alberta Forest Biodiversity Monitoring Program 
(Farr et al. 1999). Over 20 years, this effect size equates to a 45% decline. Simulated community trends were 
reduced to -1% per year to account for the reduced sensitivity of community metrics to disturbance. Over 20 
years, this effect size equates to an 18% decline. Negative trends were simulated to achieve conservative power 
estimates and because they are of greater conservation interest. For a given effect size, positive exponential trends 
result in larger overall changes and are therefore easier to detect.  

Monitoring data collected from a site within a given year were simulated as gaussian deviates (truncated at zero) 
with mean equal to the point on the site-specific trajectory for that year, and variance τ1

2. Although a discrete 
distribution, such as the Poisson, is often used to generate count data, a continuous distribution was required to 
accommodate counts from multiple surveys that were averaged prior to analysis. Although the lognormal and 
zero-truncated normal distributions were considered when generating abundances, the zero-truncated normal was 
selected because the lognormal underrepresented zero counts. The zero-truncated normal was also used to 
generate community metrics because they are calculated by summing random variables and, according to the 
central limit theorem (Hilborn and Mangel 1997), should therefore be distributed normally.  

To analyze the simulated data, we applied route regression (Geissler and Sauer 1990). Route regression is a two-
stage estimator, whereby trends are first estimated at each site by fitting the data to the exponential model and are 
then combined to estimate regional trend. Trend significance was estimated following the method used by the 
U.S. National Biological Service when analyzing BBS data, as described in Thomas (1997). This involved taking 
400 bootstrap samples of the site trends and using the bootstrap mean and variance in a two-sided z test to test the 
alternative hypothesis that regional trend differed from zero. Significance was set at 80%, following the 
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recommendation of Gibbs et al. (1998) that power and significance be set at 90% and 80%, respectively, for 
ecological monitoring programs. The simulation process was repeated 1000 times (Link and Hatfield 1990) and 
power was estimated as the proportion of simulations for which trend was determined significant and trend 
direction was correctly identified. 

 

APPENDIX 3. Monitoring Program Cost Model 

The cost model accounts for labor, equipment, and terrestrial and aerial access costs. Cost estimates were 
provided by the Alberta Forest Biodiversity Monitoring Program (D. Farr, personal communication). Sampling of 
sites is completed by two-person field crews. Within our simulated range, each crew samples one site per day, 
regardless of point-count station density. Based on an annual crew cost of $26,667, and assuming 30 site visits per 
crew in a year, the cost per site sampling visit is $889. Sites are also visited once prior to initiation of the 
monitoring program, to locate sites and identify point-count stations, at a cost of $1,333 per site. Because of the 
remoteness of much of Alberta’s forest, it is assumed that 50% of the sites require aerial (helicopter) access. Each 
site requires two hours of helicopter time, at a cost of $750 per hour. Total program cost is then: 

   
 
  [A3.1] 

The equation underestimates true monitoring cost because it accounts only for field and access costs, and not for 
costs associated with administration, data analysis and management, training, and report production. However, 
because the magnitude of these excluded costs is relatively independent of sample effort, the model should 
provide a reasonable portrayal of the relative costs of the sample effort parameters. 
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