Ecology and Society Ecology and Society
E&S Home > Vol. 21, Iss. 4 > Art. 12 > Abstract Open Access Publishing 
Avian Cholera emergence in Arctic-nesting northern Common Eiders: using community-based, participatory surveillance to delineate disease outbreak patterns and predict transmission risk

Samuel A Iverson, Department of Biology, Simon Fraser University; Canadian Wildlife Service, Environment and Climate Change Canada
Mark R. Forbes, Department of Biology, Carleton University
Manon Simard, Nunavik Research Centre, Makivik Corporation, Kuujjuaq
Catherine Soos, Science and Technology Branch, Environment and Climate Change Canada; Department of Veterinary Pathology, University of Saskatchewan
H. Grant Gilchrist, National Wildlife Research Centre, Environment and Climate Change Canada

DOI: http://dx.doi.org/10.5751/ES-08873-210412

Full Text: HTML   
Download Citation


Abstract

Emerging infectious diseases are a growing concern in wildlife conservation. Documenting outbreak patterns and determining the ecological drivers of transmission risk are fundamental to predicting disease spread and assessing potential impacts on population viability. However, evaluating disease in wildlife populations requires expansive surveillance networks that often do not exist in remote and developing areas. Here, we describe the results of a community-based research initiative conducted in collaboration with indigenous harvesters, the Inuit, in response to a new series of Avian Cholera outbreaks affecting Common Eiders (Somateria mollissima) and other comingling species in the Canadian Arctic. Avian Cholera is a virulent disease of birds caused by the bacterium Pasteurella multocida. Common Eiders are a valuable subsistence resource for Inuit, who hunt the birds for meat and visit breeding colonies during the summer to collect eggs and feather down for use in clothing and blankets. We compiled the observations of harvesters about the growing epidemic and with their assistance undertook field investigation of 131 colonies distributed over >1200 km of coastline in the affected region. Thirteen locations were identified where Avian Cholera outbreaks have occurred since 2004. Mortality rates ranged from 1% to 43% of the local breeding population at these locations. Using a species-habitat model (Maxent), we determined that the distribution of outbreak events has not been random within the study area and that colony size, vegetation cover, and a measure of host crowding in shared wetlands were significantly correlated to outbreak risk. In addition, outbreak locations have been spatially structured with respect to hypothesized introduction foci and clustered along the migration corridor linking Arctic breeding areas with wintering areas in Atlantic Canada. At present, Avian Cholera remains a localized threat to Common Eider populations in the Arctic; however expanded, community-based surveillance will be required to track disease spread.

Key words

Arctic; Avian Cholera; Common Eider; conservation; emerging infectious disease; Inuit; Maxent; participatory surveillance; species-habitat model

Copyright © 2016 by the author(s). Published here under license by The Resilience Alliance. This article  is under a Creative Commons Attribution-NonCommercial 4.0 International License.  You may share and adapt the work for noncommercial purposes provided the original author and source are credited, you indicate whether any changes were made, and you include a link to the license.

Top
Ecology and Society. ISSN: 1708-3087