Ecology and Society Ecology and Society
E&S Home > Vol. 2, Iss. 2 > Art. 13 > Abstract Open Access Publishing 
Winter Responses of Forest Birds to Habitat Corridors and Gaps

Colleen Cassady St. Clair, University of Alberta
Marc Bélisle, Université de Sherbrooke
André Desrochers, Université Laval
Susan Hannon, University of Alberta


Full Text: HTML   
Download Citation


Forest fragmentation and habitat loss may disrupt the movement or dispersal of forest-dwelling birds. Despite much interest in the severity of these effects and ways of mitigating them, little is known about actual movement patterns in different habitat types. We studied the movement of wintering resident birds, lured by playbacks of mobbing calls, to compare the willingness of forest birds to travel various distances in continuous forest, along narrow corridors (fencerows), and across gaps in forest cover. We also quantified the willingness of Black-capped Chickadees (Poecile atricapillus) to cross gaps when alternative forested detour routes were available. All species were less likely to respond to the calls as distance increased to 200 m, although White-breasted Nuthatches (Sitta carolinensis) and Hairy Woodpeckers (Picoides villosus) were generally less likely to respond than chickadees and Downy Woodpeckers (P. pubescens). Chickadees were as likely to travel in corridors as in continuous forest, but were less likely to cross gaps as the gap distance increased. The other species were less willing to travel in corridors and gaps relative to forest, and the differences among habitats also increased with distance. For chickadees, gap-crossing decisions in the presence of forested detours varied over the range of distances that we tested, and were primarily influenced by detour efficiency (the length of the shortcut relative to the available detour). Over short distances, birds used forested detours, regardless of their efficiency. As absolute distances increased, birds tended to employ larger shortcuts in the open when detour efficiency was low or initial distance in the open was high, but they limited their distance from the nearest forest edge to 25 m. Thus, chickadees were unwilling to cross gaps of > 50 m when they had forested alternatives, yet they sometimes crossed gaps as large as 200 m when no such choice existed. Our results suggest that the presence of corridors enhanced the movement of some, but not all, forest birds, and that even chickadees, which were less sensitive to gap width, preferred not to venture far from forest cover.

Key words

Black-capped Chickadee, corridor, detour trials, dispersal, Downy Woodpecker, forest fragmentation, gap width, Hairy Woodpecker, movement, Poecile atricapillus, Picoides pubescens, Picoides villosus, Sitta carolinensis, White-breasted Nuthatch.

Copyright © 1998 by the author(s). Published here under license by The Resilience Alliance. This article is under a Creative Commons Attribution 4.0 International License. You may share and adapt the work provided the original author and source are credited, you indicate whether any changes were made, and you include a link to the license.

Ecology and Society. ISSN: 1708-3087