Ecology and Society Ecology and Society
E&S Home > Vol. 15, Iss. 1 > Art. 7 > Abstract Open Access Publishing 
Piloting a Non-Invasive Genetic Sampling Method for Evaluating Population-Level Benefits of Wildlife Crossing Structures

Anthony P Clevenger, Western Transportation Institute, Montana State University
Michael A Sawaya, Department of Ecology, Montana State University


Full Text: HTML   
Download Citation


Intuitively, wildlife crossing structures should enhance the viability of wildlife populations. Previous research has demonstrated that a broad range of species will use crossing structures, however, questions remain as to whether these measures actually provide benefits to populations. To assess this, studies will need to determine the number of individuals using crossings, their sex, and their genetic relationships. Obtaining empirical data demonstrating population-level benefits for some species can be problematic and challenging at best. Molecular techniques now make it possible to identify species, individuals, their sex, and their genetic relatedness from hair samples collected through non-invasive genetic sampling (NGS). We describe efforts to pilot a method to assess potential population-level benefits of wildlife crossing structures. We tested the feasibility of a prototype NGS system designed to sample hair from black bears (Ursus americanus) and grizzly bears (U. arctos) at two wildlife underpasses. The piloted hair-sampling method did not deter animal use of the trial underpasses and was effective at sampling hair from more than 90% of the bear crossing events at the underpasses. Hair samples were also obtained from non-target carnivore species, including three out of five (60%) cougar (Puma concolor) crossing events. Individual identification analysis revealed that three female and two male grizzly bears used one wildlife underpass, whereas two female and three male black bears were identified as using the other underpass. Of the 36 hair samples from bears analyzed, five failed, resulting in an 87% extraction success rate, and six more were only identified to species. Overall, 70% of the hair samples from bears collected in the field had sufficient DNA for extraction purposes. Preliminary data from our NGS suggest the technique can be a reliable method to assess the population-level benefits of Banff wildlife crossings. Furthermore, NGS can be an important tool for the conservation value of wildlife crossings for other taxa, and we urge others to carry out evaluations of this emerging methodology.

Key words

Banff National Park; DNA; genetics; non-invasive; road ecology; Ursus americanus; Ursus arctos; wildlife crossing structure

Copyright © 2010 by the author(s). Published here under license by The Resilience Alliance. This article is under a Creative Commons Attribution 4.0 International License. You may share and adapt the work provided the original author and source are credited, you indicate whether any changes were made, and you include a link to the license.

Ecology and Society. ISSN: 1708-3087